Apoptosis: Mitochondria – Oxidized Lipids

Gerhard Gröbner

Biological Chemistry

Umeå University, Sweden
Programmed Cell Death: Development

Elimination of useless and/or dangerous cells

Life time of erythrocyte: 120 days

dysfunction = pathology (cancer, Alzheimer….)
Apoptosis: Mitochondrion / Cardiolipin

Collaboration E. Dufourc, CNRS Bordeaux, F.
Life or Death Decision at Mitochondrion

Machinery

Mitochondrial Pathway
Life or Death Decision at Mitochondrion

Principle

![Diagram showing balance between "Yang" and "Yin" proteins and their effects on cell death signals, leading to life or death decisions.]

- "Yang" proteins (e.g., Bcl-2, Bcl-xL, Mcl-1, Bcl-w, A-1) with "Yang" in excess block cell death signals, leading to Life.
- "Yin" proteins (e.g., Bax, Bak, Bik, Bad, Bid) with "Yin" in excess promote cell death signals, leading to Death.
Cancer Treatment

- Drug induced cell death
- Tumor cells become resistant against drugs
- Cells develop strategies to block death signals

Main Player: Bcl2 family
Amyotrophic Lateral Sclerosis (ALS) – Lou Gehrig Disease

Cu/Zn superoxide dismutase (SOD1)

\[
2O_2^- + 2H^+ \leftrightarrow O_2 + H_2O_2
\]

Famous persons with ALS
- Mao Tse Tung (1893-1976)
- Lou Gehrig (1905-1941)
- Immendorff (died 2007)
- Stephen Hawkings (still alive)

Familiar ALS (FALS) associated with mutations in the SOD1 gene

Protein folding disease

? Neurotoxic Action ?
? Are Membranes perhaps Involved?

native

(partly) unfolded

A104F

net charge increase

aggregated

Survival time (years)

Survival time (years)

net charge decrease

-5

-4

-3

-2

ΔΔG (kcal/mol)

A4V

Lindberg et al. PNAS | July 12, 2005 | vol. 102 | no. 28 | 9754-9759

Survival time = f (protein stability)

membrane
Experimental Setup

Reducing conditions:
0.5 mM TCEP
APO state:
10mM EDTA

Lipid Membranes

Neutral Surface
eukaryotic cells: outside

Charged Surface
mitochondrial membranes
cancer cells: outside
prokaryotes
Circular Dichroism (CD): Structural Changes

- Charged membranes required for association
- apo-SOD1 (native fold) undergoes structural changes
Membrane-Association: WT versus Mutants

Apo-state 37C

- Charged membranes required for association
- Membrane association increases with stability (ΔG)
- Unfolded protein population does not bind
Crowding on Membrane Surfaces: NMR-Tools for Lipids

31P MAS NMR

negative part of dipole

14N MAS NMR

positive part of dipole

Lindström, Williamson, Gröbner JACS (2005)
$^{14}\text{N}/^{31}\text{P}$ NMR: Surface Electrostatics

^{14}N NMR

DMPC

Δn_Q and σ_i: both report on surface potential
Electrostatic Membrane Association of Amyloid Peptide

DMPC/DMPG (2:1)

\[\text{A} \beta(1-40) \text{ Peptide} \]

\[^{31}\text{P CP MAS NMR} \]

(20ms contact time)

PC

PG

no peptide

60:1 L/P

30:1 L/P

JACS 2005
Alzheimer’s Disease: Membrane Involvement

31P MAS NMR: SOD1 and Mutants

- **NMR:** no simple charge compensation mechanism
- **most aggressive mutant** – less interactions
How does SOD1 bind?

Holo-SOD1

90 Debye

apo-SOD1

180 Debye

A

B

Electric dipole moments, calculated according to Felder et al. (negative, red sphere; positive, blue cone)

not binding

binding
SOD1’s Interplay with Membranes

I. Electrostatic Absorption
II. Conformational Changes
III. Hydrophobic Membrane Action

apo-state monomer
conformation
unstable stable

I.

II.

III.

Leakage -> Toxicity ?

Equilibrium <-> Aβ-protein
Mitochondrial Membranes: Potential SOD1 Target Sites

M-WT dimer

neutral

M aggregating or M₂

partially charged

highly charged

apo wtSOD1 affinity to charged membranes
What Happens at the Mitochondrion?

Collaboration E. Dufourc, CNRS Bordeaux, F.
Model System: Bcl-2 Segements and Mitochondrial Model Membranes

BH4 and α1 Peptides

Main Player: Bcl2 family
BH4 domain prefers cardiolipin

31P CP MAS NMR Buildup Curves: Lipid Dynamics

Principle

Peptide Induced Changes

Behaviour of BH4 versus Bax-α1

<table>
<thead>
<tr>
<th></th>
<th>BH4 Ri50</th>
<th>Bax-α1 Ri50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Time (ms)</td>
<td>0, 2, 4, 6, 8, 10</td>
<td>0, 2, 4, 6, 8, 10</td>
</tr>
<tr>
<td>Intensities normalized on DMPC higher value</td>
<td>0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0</td>
<td>0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0</td>
</tr>
</tbody>
</table>

- **MitoCT PC/PE/CL (28:22:20)**
- **BH4 Ri50**
- **Bax-α1 Ri50**

by Murray
Bax-α1: Membrane insertion or not?

2H NMR

PC/PE

PC/PE/CL

35°C

Hydrophobic core

5% mol Bax-α1
2% mol Bax-α1
pure

31P NMR

PC/PE/CL

PC/PE

35°C, 6kHz spinning

Headgroup region
Bax-α1/BH4: Membrane Interaction Models

Bax-α1 apoptotic action

- BH4 interacts with negatively charged vesicles
- Increases membrane order and therefore their stiffness

This behaviour could interfere with the anchoring of the pro-apoptotic Bax protein into the outer mitochondrial membrane system.

BH4 anti-apoptotic action

Complex Machinery

How do intact mitochondria respond to external death signals

Challenge is to apply high resolution solid state NMR \textit{Ex Vivo}

4 steps:
- Grinding
- Centrifugation/Washing (5000g)
- Centrifugation/isolation (30000g)
 - by gradient at 28\% Percoll
- Centrifugation/Washing (5000g)

Results/Yield:

2kg potatoes = 400\mu L of pure mitochondria
About 70mg/mL of proteins = 15-30mg/mL of lipids

About 1-2mg of lipids loaded per sample
Mitochondria contain ions/paramagnetic agents

ex vivo 31P NMR on Mitochondria

A) 31P Static NMR on Mitochondria

B) 31P MAS NMR

Lamellar phase

CL-Cytochrome c complex

! Lipids can monitor mitochondrias’ integrity!
Mitochondrial Respiration

(Oxygen Consumption)

![Diagram of Mitochondrial Respiration](image)

<table>
<thead>
<tr>
<th></th>
<th>Fresh mitochondria</th>
<th>Mitochondria after NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory rates</td>
<td>41 ± 3</td>
<td>37 ± 5</td>
</tr>
<tr>
<td>(nmolO₂.min⁻¹.mg⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCR</td>
<td>3.0 ± 0.2</td>
<td>1.8 ± 0.2***</td>
</tr>
</tbody>
</table>

Mitochondria survived
31P NMR Study: Degradation of Mitochondria

- narrow lineshapes
- downfield shifts
- small vesicle formation
- changes in lipid headgroup packing
Cardiolipin-Cytochrome c Complex

paramagnetic
Cardiolipin

apoptotic stimuli

Dissociation driving force behind CL NMR signal recovery
31P NMR: Ca2+ Effect on Mitochondria

Ca2+ ions – apoptotic stimuli
induce swelling of mitochondria and cytochrome C release

NMR shows: lamellar phase destruction and no evident hexagonal formation
Respiration upon Ca$^{2+}$ Overload

A Mal/Glu → ADP → RCR: 2.0 → 48nmolO$_2$.min$^{-1}$.mg$^{-1}$prot → ADP → RCR: 2.4 → 56nmolO$_2$.min$^{-1}$.mg$^{-1}$prot → ADP → RCR: 2.3

B Mal/Glu → ADP → RCR: 1.7 → 40nmolO$_2$.min$^{-1}$.mg$^{-1}$prot → ADP → RCR: 2.0 → 45nmolO$_2$.min$^{-1}$.mg$^{-1}$prot → ADP → RCR: 1.7

1mM Ca$^{2+}$

Outer Membrane Misfunctioning

Oxidation decoupled from Phosphorylation

Intact mitochondria:

OM swelling

f([Ca$^{2+}$])
Solid State NMR based ex vivo assay

- NMR based *intracellular* toxicity assays: SOD1 mutants
- Drug screening on mitochondria from resistant tumors
- ex vivo NMR on various tissue mitochondria
- Dissecting the effects of different apoptotic proteins (Bcl2/Bax) on mitochondrial survival.

A kind of in cell (in mitochondria) NMR possible

- Lipid composition of mitochondria from tumour tissues and upon drug treatment
- Role of oxidized lipids: Apoptosis Onset, Membrane Biophysics
Novel 2D Solution NMR Technique

- Proton Detection via cryo probe – highly sensitive
- separating lipids overlapping in direct 31P NMR Spectra

Role of Oxidized Lipids

* Oxidized lipids by reactions of unsaturated lipids with oxygen species.
* They interact with bilayer: impact on mitochondrial membrane organization
Phase Behaviour of DMPC Membranes by Oxidized Lipids

DMPC Bilayer: sharp transition

Sharp and broad components: OxLi-poor and OxLi-rich lipids domains
31P NMR: DMPC/Paze 9:1 Bilayers

- Two Phases
- CSA increases with T
\[^{31}\text{P NMR: DMPC/Poxno 9:1 Bilayers} \]

- Two Phases
- CSA increases with T
- different to Paze
Oxidized Lipids: Future

- Impact on Membrane Structure and Dynamics
- Specific Interactions with Bcl-2 Proteins
- Modulation of Membrane-mediated Misfolding
- Occurrence in Mitochondria during Apoptosis

not much known
Acknowledgements

Group
Marcus Wallgren
Tofeeq Rehman
Johan Vestergren
Andrea Vincent
Lenka Borova
Hagiang Nguen
Marco Sani (Melbourne)
Robert Byström (gone)
Christopher Aisenbrey
(Strassbourg)

Amyloid Diseases
Stefan Marklund (UMU))
Mikael Oliveberg (Stockholm)
Lina Leinartaite (Stockholm)
Oleg Antzutkin (Luleå)

Collaborators
Anders Pedersen (Gothenburg, S)
Philip Williamson (Southampton, UK)
Clemens Glaubitz (Frankfurt, D)
Erick J. Dufourc (Bordeaux, F)
Tomasz Borowik (Wroclaw, P)
Martin Hof (Prague, CZ)
Olivier Keech (UMU)
Per Gardeström (UMU)

Special Thanks Vanessa Kunkel

Funding
Kempe Foundation Swedish Research Council (VR) Alzheimer Foundation (Sweden)
STINT/DAAD Umeå University
Insammlingsstiftelse, Hjärnfonden