Protein-nucleotide interactions detected by solid-state NMR

Dr. Thomas Wiegand
CCPN Meeting 2017, Stirling
15/07/2017

HpDnaB

ATP
or
ATP-analogues
+
ssDNA
DnaB helicases unwind double-stranded DNA

- Structural consequences of nucleotide binding (ATP & DNA)?
- Structure-function relationships in protein engines?
- How does DNA replication work on a molecular level?

Taken from: http://love-life-science.blogspot.ch/2014/09/unzipping-of-dna.html

Adapted from: http://biochem.pepperdine.edu/dokuwiki/doku.php?id=chem331:dnab_helicase
ATP-hydrolysis is coupled to molecular functioning

Walker, ..., Gay, The EMBO Journal, 1982, 1, 945-951;
The helicase from *Helicobacter pylori* forms dodecameric assemblies

SF4 helicase

Molecular mass of **672 kDa**, 488 aa/ monomer

Homology model for the *HpDnaB:ADP* complex (based on the *AaDnaB:ADP* crystal structure)

Questions to be addressed by solid-state NMR

Do the nucleotides bind to the protein?

Where do they bind?

What are the structural consequences of nucleotide binding?
Approaches to probe protein-nucleotide interactions

Diamagnetic NMR
(e.g. 31P MAS; 13C/15N CSPs; 15N, 13C NCX; 13C, 31P and 15N, 31P correlations)

Dynamic nuclear polarization (DNP)

DNA binding to HpDnaB

ATP/DNA binding

Paramagnetic NMR
(e.g. substitution of the Mg$^{2+}$ cofactor by Mn$^{2+}$ or Co$^{2+}$)

EPR
(e.g. Mn$^{2+}$-Mn$^{2+}$ DEER)
Part 1

Diamagnetic solid-state NMR

How to monitor nucleotide binding?

How to distinguish between bound and unbound nucleotides?
31P NMR to distinguish between bound and unbound nucleotides

31P solution-state experiments allow to assign the resonances of AMP-PNP/AMP-PN

31P direct pulsed experiments detect AMP-PNP and AMP-PN in the solution phase of the NMR rotor

31P, 1H cross-polarization (CP) experiments detect bound AMP-PNP in slightly different conformations

31P NMR: Does ssDNA bind to the helicase?

31P **solution-state** experiments allow to detect unbound ssDNA

31P **direct pulsed** experiments detect hydrolyzed AMP-PNP (AMP-PN) in the solution-phase of the NMR rotor

31P, 1H **cross-polarization** (CP) experiments detect bound ssDNA to the helicase

31P chemical shifts are very sensitive to the choice of the ATP-analogue.

- 31P,1H cross-polarization experiments allow to detect the bound ATP-analogues.
- Structural inhomogeneities observed upon AMP-PNP binding.
- ATP gets hydrolyzed during rotor filling.
DNA-binding monitored by $^{31}\text{P},^{1}\text{H}$ cross-polarization experiments

DnaB + ATP-analogue + ssDNA

$^{31}\text{P},^{1}\text{H}$ CP-MAS NMR @ 11.74 T
Arginine sidechains of the protein bind to ssDNA

arginine sidechain

phosphate backbone of DNA
CSPs indicate nucleotide binding & conformational switch of the CTD

HpDnaB
HpDnaB + AMP-PNP + MgCl$_2$

Chemical-shift perturbations (CSPs)
- Consequence of nucleotide-binding
- Related to allosteric effects

13C-13C 20 ms DARR @ 850 MHz

How to assign such a large system? Building block approach

Are the domains conserved? Transfer of assignments between NTD (assignment available) and FL HpDnaB possible?

Wiegand, Gardiennet, ..., Terradot, Böckmann, Meier, *Biomol. NMR Assign.*, 2016, 10, 13-23;
Building block approach: Assignment of the full-length protein

Averaged absolute 13C and 15N chemical shift differences between NTD and FL HpDnaB

And the CTD? Sequential assignment of the full-length protein

Wiegand, Gardiennet, ..., Terradot, Böckmann, Meier, J. Biomol. NMR, 2016, 65, 79-86.
Part 2

Paramagnetic solid-state NMR to determine protein-ATP interactions

Where does the metal ion bind?
Paramagnetic solid-state NMR allows to identify residues in NBD

Mn$$^{2+}$$: Paramagnetic relaxation enhancements (PREs)

Co$$^{2+}$$: Pseudo-contact shifts (PCSs)

- $I_{\text{para}}/I_{\text{dia}}$ ratio for 2D 13C-13C DARR
- $B_0 = 20.0$ T
- $T_{1e}(\text{Mn}^{2+}) = 30$ ns
- $T_{1e}(\text{Co}^{2+}) = 0.1$ ns
- $I_{\text{CP}}, I_{t1}, I_{t2}, I_{\text{DARR}}$
- experimental conditions

NMR: Diamagnetic Mg\(^{2+}\) can be substituted by paramagnetic Mn\(^{2+}\) ions

3 types of resonances:

a) Not-influenced by **AMP-PNP:Mn\(^{2+}\)** binding (e.g. 24A)

b) Attenuated upon **AMP-PNP:Mn\(^{2+}\)** binding (e.g. 228A)

c) Broadened beyond detection upon **AMP-PNP:Mn\(^{2+}\)** binding (e.g. 203A, 351A)

How to determine PREs with CCPN?

- Assign 3D spectra of diamagnetic protein sample
- Scale the spectra (use a resonance not affected by PREs, here $34V$)
- Assign 3D spectra of paramagnetic protein sample
- Extract intensities from peak assignment lists

Site-specific determination of PREs from 3D experiments

Residues with effective distances < 15 Å (distance between Cα and the two nearest metal centers)

Paramagnetic solid-state NMR allows to identify residues in NBD

Long-range distance information (> 20 Å) becomes accessible, nucleotide binding domains are identified.

Part 3

$^{31}\text{P},^{13}\text{C}$ correlation experiments to probe protein-nucleotide interactions

Where do the ATP-analogues and DNA bind?
MAS-DNP for studying protein-DNA interactions

31P-13C/15N correlations suffer from weak NMR signal

Dynamic nuclear polarization (DNP)-enhanced MAS

Collaboration with Prof. C. Copéret (ETH Zürich)

Taken from: http://www.coperetgroup.ethz.ch/research/dynamic-nuclear-polarization--dnp--.html
MAS-DNP for studying protein-DNA interactions

$HpDnaB:ADP:ssDNA$

$\rho = \left(\frac{SN_{DNP}}{SN_{NMR}}\right)$

Highest sensitivity without d8-glycerol.
2 mM AMUpol radical concentration (not optimized).

Wiegand, ..., Copéret, Böckmann, Meier, *J. Biomol. NMR*, submitted.

Collaboration with Prof. C. Copéret (ETH Zürich)
MAS-DNP for studying protein-DNA interactions

Collaboration with Prof. C. Copéret (ETH Zürich)

10.0 kHz @ 14.1 T
395 GHz gyrotron

Measurement time 21 h.

Morag, ..., Goldbourt, JACS, 2014, 136, 2292-2301;
Wiegand, ..., Copéret, Böckmann, Meier, J. Biomol. NMR, submitted.

HpDnaB:ADP:ssDNA

Lowest contour level: 2.1 times noise RMSD
Any chance for probing DNA interactions under conventional NMR conditions (in reasonable measurement time)?

CHHP 2D experiments for studying protein-DNA interactions

HpDnaB:ADP:AIF₄⁻:ssDNA

Measurement time 13 d.

200 μs H-H spin diffusion time
11.74 T @ 17.0 kHz
Conclusions

- 31P NMR allows to monitor nucleotide binding

- 13C/15N CSPs highlight conformational changes

- Paramagnetic NMR allows to probe protein-ATP interactions

- DNA binding can be detected in 31P/13C correlation experiments
ETH Zürich
Prof. Beat H. Meier
Riccardo Cadalbert
Prof. Gunnar Jeschke
Katharina Keller
Dr. Maxim Yulikov
Prof. Christophe Copéret

mmmsb Lyon
Dr. Anja Böckmann
Denis Lacabanne
Dr. Laurent Terradot
Dr. Joanna Timmins (Grenoble)