Exemplar Projects

- Glycomics of *Mycobacterium bovis* and *Campylobacter jejuni*
- Spatio-temporal control of phagocytic signalling during uptake of attenuated *Salmonella typhimurium*
- Innate Immune Signalling

CISBIC Core Facilities

- Imaging
- Mass Spectrometry and glycomics
- Mass Spectrometry and proteomics (phosphoproteomics)
- Metabonomics
- Microarray (2 colour)
- Microarray (affymetrix)
- Bioinformatics

Centre for Bioinformatics

- Opened 2001 with mission to:
 - promote and co-ordinate world-class research and training in Bioinformatics within Imperial
 - provide state-of-the-art Bioinformatics support to members of Imperial for their research
- Centralised bioinformatics resources
- Network of affiliates
- An entry point to Bioinformatics within Imperial
- Outreach - London Bioinformatics Forum
- High quality teaching – e.g. Wellcome 4yr PhD, MSc

Bioinformatics Support Service

- 4 full-time staff - wide range of expertise
- Hardware resources – dedicated central servers
- Local copies of public biological databases
- Help-desk via email
- Web-site - help documentation/tutorials
 - web-based programs
- One-to-one tutorial sessions and site visits
- Formal teaching - practical-based training courses
- Development - bespoke scripts and interfaces
- Project-based consultation and collaboration
Resources For CISBIC

- 2-5 new posts
- Additional bioinformatics support by BSS
- New dedicated database servers (development & production)
- Use of existing core bioinformatics databases
- Use of HPC in LeSC
- Close access to wet-lab researchers and modellers

System Biology Data Management

User Query Interface

Database Federation layer

Local Public Databases

Microscopy

Microarrays

Proteomics

Genomics

Current Scoping

- Survey existing data management practices within core groups – existing databases/systems?
- Discuss relevant minimal biological data to store (common to all experimental methods)
- Survey current ‘useable’ status of relevant standards e.g. MIAME, PSI and markup languages e.g. SBML
- To barcode or not to barcode?
- Then design of primary central data management module to store biological data and tag to unique primary accession number

Ideally....

- Ensure everyone using any of the core facilities has to enter crucial biological/experimental data centrally so experiments spanning different technologies times & groups on the same biological material can be identified and later cross-mapped
- Tied into equipment booking systems?
- Will electronic lab-books help?
- Temptation to ask for absolutely every parameter to be recorded ‘just in case’ but this affects compliance!
- Has to be easy to use

Experimental Data Repositories

- What is already in use?
- (How) can it be adapted/extended to tie to central modules?
- Where are new databases required?

Complications

- Legacy - multiple microarray databases already in use, some groups have no central repository
- Many data types arising from different groups, methodologies
- Many raw data files too large to exchange e.g. images
- Some complex data very difficult to interpret in isolation e.g. metabonomic
- Some data standards more mature (stable, useable) than others – trying to hit a moving target
- Requirement to manage data while data management/integration system being built
Integration Stages
- Data federation layers to associate data within type-specific repositories and allow centralised inter-database queries
- Integration with existing public databases for added-value
- Improved data input and query interfaces
- Updating whole in line with emerging standards and user feedback
- Data sharing policies (external)

Challenges
- Underpin Integrative Systems Biology at Imperial
- Provide functional data management that:
 - Is readily accessible to biologists
 - Supports data exploration and mining by the modelling community
 - Is flexible – allows adaptation for ongoing changes in standards (e.g. PSI), remit (new methods, new data types)

A Distributed System for E-Support of Microarray Data Analysis and Management - EMAAS

Complications of Supporting Microarray Analyses
- Multiplicity of software with different interfaces, running on different platforms
- Steep learning curve for complex software and analyses
- Need to continually assess, integrate, maintain, support new software and tools in fast-changing field
- No single common data format - data integration & transfer often difficult
- Data storage – large data, often not centralised
- Efficient support difficult and time-consuming when remote staff don’t have ready access to experimentalist's data

EMAAS
- Extensible MicroArray Analysis System
- The development of a portal providing:
 - Simple, robust access to up-to-date resources for microarray data storage and analysis
 - Distributed availability of the portal allowing access to large compute power facilities required for microarray analysis and storage
 - An integrated system to optimise distance user support and training using these amenities

Project Components
3 integrated components:
- LeSC – portal infrastructure, web and grid services
- MAC – access to data repositories and intermediate database for analysis tracking
- BSS – Implementation of portal interface and integration of data analysis tools
Architecture Summary

- Underlying database POSTGRES
- Portal interface developed in OpenLazlo
- Job/resource scheduling using GRIDSAM
- Main microarray QA and analyses using R/Bioconductor
- GO annotations/KEGG pathway retrievals using Taverna SCUFL workbench

Overview of a Typical Microarray Data Analysis Workflow

1. Data Import
2. Experimental Design
3. Quality Assessment
4. Data Pre-Processing
5. Quality Assessment
6. Expression Analysis
7. Downstream Annotation and Functional Analysis
8. Report Results
9. Publish Data to External Public Database

Microarray Data Mining Resource (MiMiR)

- Comprehensive solution for storage, annotation and exchange of Affymetrix microarray data
- Based on MAGE format and MIAME-supportive
- Currently being extended to capture array-associated clinical information

Analysis - GridSAM - R

- Scatter Plots
- Simple Affy
- PLM plots

EMAAS Server
Grid Compute cluster nodes

Resulting plots returned to EMAAS server for portal display

Reporting Results

- All analysis steps, methods and parameters are captured
- A .pdf report can be generated from the analysis steps to describe how the analysis was performed
- Facilitate users data export experience through direct links to MIAMExpress (The ArrayExpress web submission tool)
- Animated tutorials via OpenLaszlo Media tools
- Users who have data in MiMiR can export data automatically to Array Express
Acknowledgements

- BBSRC for funding CISBIC
- Douglas Young and Jaroslav Stark
- Other 15 CISBIC co-applicants
- Mike Sternberg
- Geraint Barton
- James Abbott, Derek Huntley