Applications of NMR in (Fragment-Based) Drug Discovery

CCPN Conference 2017
University of Stirling
13th July 2017

Ben Davis
Vernalis R&D
Cambridge UK
b.davis@vernis.com
Fragment Based Lead Discovery at Vernalis

- Vernalis - biotech in Cambridge, UK
 - Founded in 1997, spin-out from LMB Cambridge
 - Developing FBLD approaches since 1998: RNA, proteins
- Collaborations across many therapeutic areas
 - Academics, large & small pharma
 - Eight development candidates generated in the past eight years
- Focus on “challenging” targets
 - Protein-protein interactions
 - Bcl-2, Mcl-1 programmes in Phase I
- FBLD is key part of overall SBDD strategy
 - Biophysics and structural biology
Early Stage Drug Discovery (and Chemical Biology)

- Hit Identification
 - High Throughput Screening
 - Fragment-based Lead Discovery
 - Virtual Screening
- Hit-To-Lead
 - Modify chemotypes & scaffolds
 - Affinity, specificity, physchem

Target Hypothesis Hit Identification Lead Optimisation
Pre-Clinical Hit-To-Lead Target Validation

Design Test Make
Why fragments?

Fragments & ligand efficiency

- Ligand efficiency
 - Key concept for fragments
 - Binding energy per heavy atom
- Low MW startpoint will have lower affinity because of small size
- Defining feature of FBLD
 - Fragments are no different to any other hit; just small
 - Low affinity is purely a result of size
 - Each fragment represents a large area of chemical space
- Low affinity will have major implications for Hit ID and evolution
 - Careful experimental design
 - Robust assays, reliable validation – low error rate
 - Strategies for fragment evolution
 - Transition from low affinity “fragment” to more potent “hit”

\[LE = \frac{(-2.303RT)}{HAC} \log K_D \]

Intrinsic LE of target

- “Intrinsic” ligand efficiency of a binding site varies from protein to protein
 - LE varies from at least 0.6 to 0.15
 - Low intrinsic LE (0.2-0.35)
 - Medium intrinsic LE (0.3-0.45)
 - High intrinsic LE (> 0.4)
- Predict expected K_D
 - Assay must be robust and reliable over this range

<table>
<thead>
<tr>
<th>LE ((kcal/mol)/HA)</th>
<th>10mM</th>
<th>1mM</th>
<th>100uM</th>
<th>10uM</th>
<th>1uM</th>
<th>100nM</th>
<th>10nM</th>
<th>1nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>55</td>
<td>64</td>
<td>73</td>
<td>82</td>
</tr>
<tr>
<td>0.20</td>
<td>14</td>
<td>20</td>
<td>27</td>
<td>34</td>
<td>41</td>
<td>48</td>
<td>55</td>
<td>61</td>
</tr>
<tr>
<td>0.25</td>
<td>11</td>
<td>16</td>
<td>22</td>
<td>27</td>
<td>33</td>
<td>38</td>
<td>44</td>
<td>49</td>
</tr>
<tr>
<td>0.30</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>27</td>
<td>32</td>
<td>36</td>
<td>41</td>
</tr>
<tr>
<td>0.35</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>0.40</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>0.45</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>0.50</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>0.55</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>0.60</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

480 target-assay pairs with more than 100 compounds covering 329 human drug targets

Hopkins et al. (2014) Nat Rev Drug Disc. 13 1474-1776
Detecting Fragment Binding

- Fragments typically 10-18 HAC
- Predicted K_Ds in the region of 10mM – 10nM
 - Typically 1mM – 10µM
- Choice of assay will depend on expected K_D
 - Reliability range of assay
 - High LE targets: e.g. K_D 10µM
 - Low LE targets: e.g. K_D 1-10mM
- Biophysical binding assays
 - Widely used, robust and generic
 - Direct observation of bound species
 - Information rich data
Artefacts and Errors

• Expected K_D's in the region of 10mM – 10nM
 • Most typically 1mM – 10µM
• Ligand concentrations typically 1-10x K_D
 • 100µM – 10+ mM
• Pushing most assays to their limits

• Easy to mistake artefacts for weak binding
 • At [L]=1mM a 1% contaminant is 10 µM
 • Assay interference from high concentrations of compounds
 • pH, redox behaviour, DMSO, metal chelation, detergents, fluorescence or absorption, interference with secondary/coupled detection system
 • Compound solubility & aggregate formation

Learning from our mistakes: the 'unknown knowns' in fragment screening
Davis & Erlanson (2013) Bioorg Med Chem Lett. 23(10):2844-52
Artefacts when characterising low affinity interactions

• Need to identify and characterise interaction between ligand and protein with a high degree of confidence
 • Particularly an issue with FBLD – easy to mistake artefacts for binding
 • Subsequent work (particularly medicinal chemistry & biology) hinges on understanding this interaction

• Need to be sure of:
 • Is the protein what I think it is?
 • Is it folded correctly and relevantly?
 • Is it stable over the required timescale?
 • Is the ligand what I think it is?
 • Is the ligand stable over the required timescale?
 • Do the ligand and protein actually interact to any significant extent in the relevant conditions?

• What's the structural basis for this interaction?

• Confidence to focus on and progress a hit series into a lead
Multiple soaks are often required to obtain a crystal structure of a fragment

<table>
<thead>
<tr>
<th></th>
<th>Fragments which gave xtal structure</th>
<th>Av. Number of attempts /fragment (total)</th>
<th>Av. Number of attempts /fragment (to get structure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSP90</td>
<td>79%</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Kinase A</td>
<td>55%</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Kinase B</td>
<td>30%</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Allosteric Target A</td>
<td>52%</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>PPI Target A (occluded active site)</td>
<td>0%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

- Vary:
 - Soak duration 16hr - 7 days
 - Temperature 4C, 20C, 30C
 - [Ligand] Start high & reduce
 - Ligand preparation

- If these don’t work:
 - Crystal form, Space group, Packing, Construct

- Protein engineering

- Highly resource intensive - confidence
Role of NMR in Drug Discovery

- **Solution NMR**
 - Large amounts of material
 - Not high throughput
 - Quantitation poor compared to other methods
 - Expensive & specialised
 - But…
 - Allows direct observation of (most) species present in solution
 - With care, very low false positive and false negative rates
 - High levels of confidence in the data
 - Characterisation of molecular interactions by NMR
 - Ligand, receptor and putative complex
 - Integrate with other biophysical and biochemical methods

Reality check - kick the tyres
Fragment Based Lead Discovery

Characterised Target → Curated Library → Robust Assay → Preliminary Hits → Validation → Characterisation

Fragment Based Screening (FBS) → Fragment Hits → Structure
Characterised Target Protein QC

- Simple 1H 1D of every batch of protein
 - Focus on amides and shifted aliphatics
- Batch-to-batch variation
 - Co-factors (e.g., Zn$^{2+}$)
 - Expression levels; handling; ...
- Estimate τ_c from 2 point spin echo
 - J. Biomol. NMR (1993) 3, 121-6
- Sample degradation over time
- Thermal stability & reversibility

Ratio 0.56
$\tau_c \approx 23$ ns
$\text{Mw}_{(\text{eff})} \approx 46$ kDa
(expected 50 kDa)
Characterised Target Protein interactions

DMSO & pH controls
- Titrate simple acid or base
- Buffer components
- Phosphate buffer
- Reducing agents
- Metal ions

Compound MOA

Tween-20 KD 20mM (0.025%)
Fragment Based Lead Discovery

Characterised Target → Preliminary Hits → Validation

Curated Library → Robust Assay → Characterisation

Fragment Based Screening (FBS) → Fragment Hits

Structure
Curated Library

- **Correct compound?**
 - Vendors & chemists do make mistakes
 - Correct isomer (bosutinib, TIC10)
- **Impurities**
 - Low levels of potent impurities
 - Metals
- **Compound stability**
 - Long term DMSO, 24 hour aqueous
- **Reactive molecules**
 - PAINS (pan-assay interference compound)
 - Redox cyclers
- **Aggregators & self-associators**
 - Particulate formation

![Chemical structures](image1)

Water-LOGSY

zgesgp

DMSO
Fragment Based Lead Discovery

- Characterised Target
- Curated Library
- Robust Assay
- Fragment Based Screening (FBS)
- Preliminary Hits
- Validation
- Characterisation
- Structure
Fragment Screening Methods

• NMR, SPR, TSA, MST, X-ray, biochemical assays ...
 • All suffer from artefacts – no assay is perfect
• Which technique to use?
 • Availability, expertise, throughput, resource, sensitivity, accuracy & precision
 • Primary vs orthogonal methods
• If the experiment is well configured, and the library is good, all techniques can give robust results
 • Quality and completeness of data will vary
 • Understand limitations of technique and validate preliminary hits carefully

• Examples of recent workflows at Vernalis:
 • Ligand observed NMR or SPR as primary screen
 • Protein observed NMR, MST or X-ray as orthogonal validation
 • X-ray as primary screen, SPR as secondary validation
 • Target readily crystallised, protein production challenging
 • Biochemical assay followed by ligand and protein observed NMR
 • High intrinsic LE, expecting $K_D < 10\mu M$
Fragment Screening by NMR

- Sensitive - detect binding at [L] below K_D
- Robust – low false positive & false negative rates
- Generic - little optimisation required, no chemical modification or labelling

Observe Protein
- **Chemical shift perturbations (CSP)**
- Direct indication of binding site (13C HSQC)
- Size restricted
 - ~ 50 kDa; Labelling strategies
- Quantity of material
 - Large amounts of isotopically labelled protein

Observe Free Ligand
- **Modulation of ligand spectrum by interaction with receptor in bound state**
- Usually observe the free state of the ligand
- Less demanding on receptor supply and properties
- Infer binding site
- **COMPETITION STEP**
Widely used ligand observed NMR experiments

STD

\[I_{\text{obs}} = f(P_{\text{bound}}) \]

Water-LOGSY

\[I_{\text{obs}} = f(P_{\text{bound}} - P_{\text{free}}) \]

Relaxation Edited \(^1\text{H}\) or \(^{19}\text{F}\)

\[I_{\text{obs}} = f(P_{\text{free}}) \]

Dalvit et al. (2001) J. Biol. NMR 21, 4, 349-359
Hajduk et al. (1997) JACS 119, 50, 12257-12261

Robust test sample (Davis (2013) MiMB 1008 389-413)

- 10 μM avidin
- 500 μM octanoic acid
- 500 μM 2-imidazolidinone
- 500 μM sucrose
- 20 mM potassium phosphate pH 7.5
- 10 % D2O
- ± 20uM biotin
Compound b binds and is displaced by competitor in all experiments ("class 1" hit)
NMR “Binding class”

- Empirical indication of confidence levels

 (Not distinguishing between experiment types; this varies from protein to protein)

 - Class 1 binds *(and displaced)* in all three experiments
 - Class 2 binds *(and displaced)* in two of three experiments
 - Class 3 binds *(and displaced)* in one of three experiments

- Success in crystallographic follow-up

 (averaged across projects with routine crystallography)

 - Class 1 75%
 - Class 2 52%
 - Class 3 41%

- More consistent behaviour across multiple experiments increases chance of obtaining crystal structure

 - But cannot ignore class 2 and class 3 hits – valuable information
Inconsistent results from orthogonal methods

• Inconsistencies observed between results from different NMR experiments
 • Same sample, same conditions, same time
• Consider role of orthogonal validation
 • “Hard” filter
• Soft filter required to assess overall data package
 • Class used for prioritisation, not exclusion
• More generally ...
 • What is the best way to combine output from orthogonal validation?
• Why are assay results from orthogonal methods inconsistent?
 • Compound issues
 • Differences in conditions
 • Experimental error
 • Confidence levels
 • Different measured parameters

• Synergy between techniques
Examine inconsistencies between techniques
“Kin1” Case Study

- Collaboration with Genentech
- SPR and biochemical assay consistent
 - Wild type, single phosphorylation site (Kin1-1P)
 - Low expression levels
- Kin1-1P expression poor
 - Use Kin1-DN mutant for NMR and X-ray
 - Expresses at high levels
- NMR inconsistent with SPR
 - Extremely high hit rate cf SPR and biochemical
- Anomalous water-LOGSY spectra
 - “inversion” on addition of staurosporine (red)
- System not behaving as expected
 - Low success rate in crystallography
- SPR systematic deviation wt vs mutant
Protein construct and buffer optimisation

- Alternative protein construct designed
 - Kin1-TA
 - Expresses readily
- Behaviour more consistent
 - More heat on binding potent compound
- Larger STD signal for adenine control
 - Anomalous water-LOGSY still observed
- Optimise buffer conditions
 - NMR: titrate MgCl₂
 - Anomalous LOGSY reduced
- FBS under these conditions
 - NMR:SPR show >90% correlation
- Tractable crystallography
- 34 bound fragment structures
Fragment Based Lead Discovery

- Characterised Target
- Curated Library
- Robust Assay
- Fragments Based Screening (FBS)
- Preliminary Hits
- Validation
- Characterisation
- Structure
Setting up an NMR Fragment Screen

- Ideally, we have a known low affinity ligand (“probe”)
 - Positive control
 - Substrate or product analogue, literature compound, binding partner

- Can we observe binding of the probe to the target protein?
 - Do related compounds bind?
 - Is this binding stable?
 - What timescale is the protein stable over?

- Can we displace the probe with a known potent ligand (“competitor”)?
 - How much competitor do we need?
 - Is the competitor stable?
Testing the binding assay:
Probe binding and competition

- Known low affinity ligand
- Known potent ligand
- Clear binding
- Clean competition
- Structurally related compounds also show the same behaviour

500 µM probe, 10 µM protein
+25 µM mid nM competitor
Displacement of probe by competitor

500 μM probe, 10 μM protein
25 μM competitor
50 μM competitor
100 μM competitor
Separate samples. STD spectra, competitor added after:

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>Spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

- Bulk sample of protein + probe prepared, split into four samples
- 50 µM competitor added after specified time
- Stability of binding and competition monitored at specific times
Competitor compound stability

- Competitor decarboxylates on standing in DMSO (stable in aqueous solution)
- Literature compound
 - Crystal structure of protein:ligand complex in PDB, density missing for carboxylate
• Competitor has limited stability in DMSO
 • Degraded material does not bind to protein
• Fragment screen as usual
 • Make up fresh competitor stock immediately prior to use and QC
• Initially ~100 compounds (“trial library”) to troubleshoot
 • 2 days
• Scale up to screen full library
 • ~1500 compounds
 • Mixtures and singletons
 • 3% validated hit rate
Fragment Based Lead Discovery

Characterised Target

Curated Library

Robust Assay

Preliminary Hits

Validation

Characterisation

Structure

Fragment Based Screening (FBS)
Fragment validation and characterisation

- **Validation** of preliminary hits
 - Initially “data are consistent with binding” ...
 - Orthogonal screening methods
 - MST, SPR, crystallography if routine
 - Protein vs ligand observed NMR
 - Single point HSQC
 - Check ligand solubility first

- **Characterisation** of validated hits
 - Affinity
 - K_D [k_{on}, k_{off}, ΔG, ΔH & $T\Delta S$]
 - Structure of protein:ligand complex
 - Crystal [solution, dynamics]
 - NMR [full structure or NMR guided model]
1D 1H Protein observed CSP

- 15N-1H (13C-1H) HSQC “gold standard” for low affinity interactions
 - Isotopic labelling, slow, size limitations
- 1H resonances shifted below ~ 0.5ppm typically arise from hydrophobic core
 - Frequently perturbed by ligand binding, particularly for proteins < ~ 35 kDa
- Determine KD from HPC CSP
 - Correlates well with 15N-1H HSQC KD
- Magnitude of HPC single point shift correlates with HPC KD
 - Use single point HPC CSP to validate compounds prior to HPC KD titration
- Rapid, inexpensive, robust
- For recent early stage project
 - 735 single point CSP in 6 months
 - 171 KD determinations
- Widely used for early stage projects

Increasing [compound]
NMR derived eKᵢ

- **¹⁹F containing ligand**: “probe”
 - -CF₃ works well
 - Known Kₛ
- Displace with test molecule
 - Reduces [protein]ₑff, R₂
 - Calculate $\%_{\text{inhib}}$ and eKᵢ
- ~ 30 compounds/night
- Simple analysis

Example conditions
- 8uM protein
- 25uM probe ligand
- 100uM test ligand
- 400ms 19F CPMG

Linear dependency of 19F R₂ on [protein]

Evolving Fragments without Crystal Structures

- Can find & validate fragments that bind
 - Evolution requires robust model of fragment binding
- Guide medicinal chemistry with structural model
- Best model is from X-ray structure
 - X-ray structures not always available
 - Don’t rule out a target just because crystallography is challenging
- NMR structures
 - Full structure is time consuming, too slow for routine use
 - Data is incremental – NMR guided modelling
- NMR guided models often good enough to guide chemistry
 - Ligand observed
 - STD-GEM, ILOE & trNOE
 - Protein observed
 - Chemical shift perturbations (CSP), filtered edited NOESY
- Track binding models with NMR data and SAR
NMR Guided Models
Proof of concept

- Low success rate for crystallography with fragments for Bcl2
 - Require alternative methods to steer medicinal chemistry
- NMR guided models
 - Assign ligand in bound state using 13C,15N purged 1Ds & NOESYs
 - Acquire 3D 13C-edited, 13C15N-filtered NOESY (X-Filtered NOESY)
 - Identify intermolecular NOEs between ligand and protein
 - Generate ensemble of protein conformations
 - Experimental or computational
 - Dock into ensemble
 - 26 NOEs observed between Bcl-2 and VER-00155493
 - Use NOEs as filter of docking poses
- Excellent agreement with crystal structure
NMR Guided Models
Project Applications

- In absence of routine crystallography, steer chemistry with robust models
 - Sparse NMR data, modelling and SAR
 - > 60 NGMs determined over recent PPI projects
- 1.5 weeks from submission to model
 - NMR solubility determination
 - HPC single point; KD
 - 15N-1H HSQC (binding site, KD)
 - NGM titration (0, 0.5:1, 1:1)
 - NGM acquisition (2.5 days)
 - Modelling (1 week)
- Models suitable for purpose
 - Protein conformation characterised
 - Binding site identified
 - Ligand orientation determined
 - Vectors orientated correctly
 - RMSD 2.5-4Å
 - Where crystal structure later determined
- Confidence to make difficult molecules
Summary and Conclusions

- FBLD is a well validated, robust method of identifying ligands for drug discovery
 - Fragments are inherently low affinity due to small size
 - Care must be taken with low affinity ligands in order to avoid artefacts

- NMR is a powerful technique for identifying, validating and characterising low affinity ligands
 - “Reality check”
 - Identify issues before investment of resource

- Integration with other biophysical methods can reveal valuable insights

- Fragment evolution can be guided by NMR in absence of crystal structures
 - Generation of structural data in timely manner
Acknowledgements

• **NMR**
 - Heather Simmonite
 - Richard Harris

• **Biophysics**
 - Alan Robertson
 - Natalia Matassova
 - James Murray

• **X-ray crystallography**
 - Allan Surgenor
 - Pawel Dokurno
 - Lisa Baker

• **Protein Purification**
 - Julia Smith
 - Neil Whitehead
 - Terry Shaw
 - Peter Kierstan

• **Fragments & Medicinal Chemistry**
 - Ijen Chen
 - Douglas Williamson
 - Lee Walmsley
 - Andrew Potter
 - James Davidson
 - Stephen Roughley
 - Paul Brough
 - James Davidson
 - Rod Hubbard